
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.43108 453

Model-Based Verification of Software Interface

Dinh Thang Pham

Faculty of Information Technology, Huflit University, Ho Chi Minh city, Viet Nam

Abstract: In Software Engineering, There is much technique to testing. They are Unit testing, Design testing, Code

testing …It depends on Development model of a project, the testing maybe before or after. In Viet Nam, the testing for

program verification is almost by manually. This thing conducts many shortcoming or overload with big project.

Although, there is many try to improve. Such as: present the requirement by XML or looking for many different

approaches. But there is no an approach to test become engineering by automatically.

From that requirement, it needs a program verification of software interface. There is a tool for testing on the computer

by automatically. With this thing, they can save much money, time, and effort.
Project is created with two concrete works. One of many importance things is choose a tool that is powerful enough to

solve the counter examples. In this project, I choose the Altarica language as that tool. And so, it must be created the

input data from XML that Altarica can readable. This operation must be implemented by a parser.

To this time, there are two functions Deadlock and Live that are implemented by successfully. And they are used for

test run. In the future, there is more function that will develop for maximum support to design.

Keywords: Model-Based Verification, Model Checking, Altarica for Model Checking, Testing, Formal Design

I. INTRODUCTION

In this project, I concentrate on program verification.

Concrete is investigated to test interface. The project is as

diagram below:

From a specification, the program must transfer to kinds of

data that Altarica can understand. This thing is

implemented via a parser from XML to Altarica

(XML2Altarica)

The result of this phase can create two importance define.

 Define of node.

 Define transactions between nodes.


The next uses the logic theory to test for counter examples.

Such as: Live, Deadlock…. If it passes, this design will be

accepted and after that is coding. And if it does not pass,

this design will be examine again.

II. MODEL-BASED VERIFICATION

A. Model Checking

Model Checking is a part in a cycle testing. It is a logic

testing and work with formal design. Model checking has

been proven extremely useful to verify the

correctness/completeness of a well-defined system.

Especially, the model checking technique is able to

generate counter-example when encountering a potential
error/flaw. Model Checking provide logic test on counter

examples. This property makes model checking highly

potential for automatic program verification. Model

Checking can show all of case in a problem, it make we

handle each of case. From there, we can save time,

expenditure, effort.

B. Technique in program verification

In program verification, the general problem is to verify
that a given program satisfies a given behavioral property

or does not violate a given property (for example, mutual

exclusion, absence of deadlock, or absence of livelock).

The combination of the automaton with the program

transition graph is efficiently done on the fly. The program

transition graph is in practice an abstract model of a

program in which only key variables are retained

(typically variables implementing synchronization and

communication among processes). It is automatically

obtained from an abstract program modelling language

(e.g., Promela in SPIN) or a fully-fledged programming

language (e.g., Java Path Finder that translates Java
programs into equivalent Promela programs before

verifying them. There is an others program that is

powerful to resolves this part. That is AltaRica. This tool

is not only feature fully but also vivacious for any case

that user can interfere.

So, some tools are AltaRica, SPIN, Tina, PIPN, SMV….

Requireme
nt from

customer
Design

Specificatio
n into XML

Convert
XML to
Altarica

Use
Altarica to
check the

model

Coding,
Implement

Read an input file

Generate AST tree

Generate Altarica code

Scan to test

which token

that has

error.

Check the input

file

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.43108 454

C. Altarica Language

The AltaRica project is born from the wish of industrial

partners and academic researchers to build gates between:

 The domain of Formal Methods and the one of

Reliability and Risk Assessment.

 The quantitative analysis of dysfunctions and the

qualitative analysis of functional behaviours.

 The tools and methods used for the modelling of

systems.

Fig.1 AltaRica Description

The aim of the project is to provide to designers an

integrated workbench for the qualitative/quantitative

analysis of complex and/or critical systems.

By many researches on various tools that serve for

program verification. In this project, the model checking I

use to check is AltaRica to solve the problem. The reason

is I was learned this knowledge. Altarica is a tool that uses

in many big projects such as: Airbus (Rosas, A350),
Dassault System (Catia System), ClearSy (Atelier B)…. in

other side, this tool is developed by Labri and this is a

promise for expanding and perfect tool in the future.

D. Dicky’s Logics

All rule in testing is based on Dicky's logic. The logical

property of an automaton can be seen as the set of all

entities that satisfy the formula. This property can be

checked by putting some mark during a depth-first-search

algorithem on the reachability graph.
There are two kinds of properties for a graph G (E,V). All

state properties (S E) and transition properties (T E x

V x E)

III. EXPERIMENT

There are two testing case in this experiment is deadlock
and live

A. Deadlock

When you go from a node, through many transactions and

go to another node that has no way to go. Now, there is

deadlock. And the node that has no way to continuous is

called dead node.

In fact, there is much design that exposed irrational when

they meet this case. Almost the people must restart or turn
off the application that is running

The following small example can describe deadlock and

using Altarica to testing.

In this test case, there is a situation for a web project with

some contents:

Fig.2 The symmetric with initial node: inbox (deadlock case)

1) Specification in XML:

Example for node Bulk

<role name="bulk">

 <status name="enable">

 <screen name="trash">

 <status name="view"></status>

 </screen>

 <screen name="bulk">

 <status name="view"></status>

 </screen>
 </status>

 <status name="disable">

 <screen name="inbox">

 <status name="view"></status>

 </screen>

 <screen name="compose">

 <status name="view"></status>

 </screen>

 </status>

</role>

….

2) Specification in Altarica:

node Button

state selected:bool:public;

event click:parent;

 off;

trans
 selected=false|-click->selected:=true;

 true|-off->selected:=false;

init selected:=false;

edon

node Content

state loaded:bool:private;

event open,load:public;

trans

 true|-open->loaded:=false;

 true|-load->loaded:=true;

init loaded:=true;

edon

3) Testing for Deadlock case:

Define testing by logical

deadlock := any_s - src(any_t - self_epsilon);

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.43108 455

This result points out there are 16 cases from initial node
(inbox) that exist deadlock. And node Bulk is dead node

Fig.3 result of Deadlock

B. Live

Live is the case that there is as least a way to go, but never

return initial node. This case make people cannot call the

homepage, return main menu or main function when they

go to child page or child function.

Fig.4 The symmetric with initial node: inbox (Live case)

1) Specification in XML:

Example for node Inbox

<root>

<role name="inbox">

 <status name="enable">

 <screen name="inbox">

 <status name="view"></status>

 </screen>

 <screen name="compose">
 <status name="view"></status>

 </screen>

 <screen name="sent">

 <status name="view"></status>

 </screen>

 </status>

 <status name="disable">

 <screen name="trash">

 <status name="view"></status>

 </screen>

<screen name="bulk">

 <status name="view"></status>

</screen>

 </status>

</role>

……

2) Testing for Live case:

Define testing by logical

livelock := any_t-loop(rsrc(initial),any_t);

The result shows that there is not deadlock. But there is

live lock with 265 cases.

Fig .5 Result of Live

There is a transaction between them

Fig .6 Bulk and trash

C. Applying Model-Based in program Verification

LARION Computing is a software outsourcing services

and business Solutions Company. LARION is founded in

2003. The company has more 70 employees and

recruiting.

Address: Room 10, Hall 5, Quang Trung Software City,

Tan Chanh Hiep Ward, Dist 12, HCMC, Vietnam
Phone: (+84.8) 37155742

Website: http://www.elarion.com

At Larion Company, I received a request from a design. It

is presented by a XML file. I same like:

<root>

<user_roles>

<role name="quan_tri_cao_cap">

<stateuses>

<status name="enable">

<screen name="Quan_Ly_Cau_Hinh" status="view"/>

<screen name="Quan_Ly_Nguoi_Dung" status="view"/>
<screen name="Quan_Ly_Nhan_Vien" status="view"/>

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.43108 456

<screen name="Quan_Ly_Bao_Cao" status="View

BCDV Ngay"/>

</status>

<status name="disable"></status>

</stateuses>

</role>

<role name="quan_tri">
<stateuses>

<status name="enable">

<screen name="Quan_Ly_Nguoi_Dung" status="view"/>

<screen name="Quan_Ly_Nhan_Vien" status="view"/>

<screen name="Quan_Ly_Bao_Cao" status="View

BCDVNgay"/>

</status>

<status name="disable"/>

</stateuses>

</role>

</user_roles>
<screens>

<screen name="Quan_Ly_Cau_Hinh">

<statescreens>

<status name="view">

<screen name="View_QLCH"/>

</status>

<status name="edit">

<screen name="Add_QLCH"/>

<screen name="Edit_QLCH"/>

<screen name="Delete_QLCH"/>

</status>

</statescreens>
</screen>

<screen name="Quan_Ly_Cau_Hinh_1">

<statescreens>

<status name="view">

<screen name="View_QLCH"/>

</status>

<status name="edit">

<screen name="Add_QLCH"/>

<screen name="Edit_QLCH"/>

<screen name="Delete_QLCH"/>

</status>
</statescreens>

</screen>

……….

</screen>

</screens>

</root>

Specification spe:

with system do

//test deadlock

Deadlock := any_s - src(any_t - self_epsilon);

//test livelock

livelock := any_t-loop(rsrc(initial),any_t);

//test SCC

SCC:=loop(any_t,any_t);

show(all);

test(deadlock,0);

test(livelock,0);

test(SCC,0);

done

After test by this program the result of testing for livelock

and deadlock is:

Fig.7 Result for fact case

As the result, this design has not deadlock. But there is

livelock with 8838 cases.
Larion Company estimated this tool is good and it can be

applying to fact.

IV. CONCLUSION

From the result of the work, we can apply to software

engineering in Viet Nam. However, there are many works

to develop such as input data checking, accepting multi

input data from many kinds, or more functions, point out
the trace that has Deadlock, Live….

By Dicky’s logics, we can make many define for test. That

is copious and satisfies with requirements. According to

my think, this project will go far in developing and

applying to fact.

ACKNOWLEDGMENT

I would like to thanks all of partner in this project. The

knowledge from Professor Alain Griffault and Professor

Ann Dicky has provided the foundation for this

experiment. Besides, with guidance and advice from

Professor Thanh Tho Quan and Professor Huu Thang

Bui keep the job all right and can implement in fact. There
is many development to applying this application. So, I

need the coloration of all. Thanks again.

REFERENCES

[1] Industrial Use of Formal Methods: Formal Verification, Jean-Louis

Boulanger, 2013, chapter 3.

[2] Altarica language. http://altarica.labri.fr/

[3] Formal Design, Alain Griffault, 2007

[4] Dicky’s Logics, http://www.dept-info.labri.fr/~dicky/

[5] Principles of Model Checking, Christel Baier, Joost-Pieter Katoen,

MIT Press, 2008.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.43108 457

BIOGRAPHY

MSc. Dinh Thang Pham

Graduated from Bordeaux 1 –France

Model Checking, Logics, Network Security,

Reverse Engineering

